
CSC 128
TOPIC 5: FUNCTIONS

By : MOHD SAIFULNIZAM ABU BAKAR

2

Learning Outcomes

At the end of this chapter, you should be able to:

❑ Understand the two types of functions.

❑ Identify the three function elements.

❑ Develop a program using functions.

3

❑ Programs can be as short as one line of code or millions of

lines of code.

❑ Small programs can easily be developed using only one

function, which is the main function.

❑ However, most computer programs that solve real-world

problems are large and contain thousands to millions of

lines of code.

❑ Thus, more than one programmer or a team of

programmers are needed to develop such programs.

Introduction

4

❑ In order to develop and maintain large programs, an

effective way to construct it is by using functions.

❑ Functions can efficiently break down large programs into

smaller ones as they can divide problems into sub

problems called modules.

❑ Every function is a program segment that can do specific

tasks.

– Each of the sub tasks can be coded as functions that must go

together with the main function to build up a complete

program.

Introduction (cont)

5

❑ Below are the advantages of using functions:

1. Functions break the program into smaller chunks, making it

easier for the programmer to code, test and debug the program.

2. Each of the functions is reusable, where the function can be

called many times.

3. By using functions, repeating code in a program can be

avoided.

❑ The explanations above refer to user-defined functions.

❑ There is another function known as the predefined function.

available in the C++ standard library

Introduction (cont)

6

❑ C++ Standard Library

contains many predefined

functions to perform various

operations

❑ These functions are

available in the C++

standard library such as

math.h and others

❑ Ready made

Function Types

Pre-Defined Function

❑ Functions which are defined by

the user.

❑ The functions that

programmers create for

specialized tasks.

❑ Custom made

User-Defined Function

7

Predefined Functions

string.h

8

Predefined Functions (cont.)

❑ stdlib.h header

9

Predefined Functions (cont.)

stdlib.h

10

Predefined Functions (cont.)

stdlib.h

11

Predefined Functions (cont.)

❑ math.h header

(6.3)

(6.7)

12

Predefined Functions (cont.)math.h

13

Predefined Functions (cont.)math.h

14

Predefined Functions (cont.)

❑ ctype.h header

15

Predefined Functions (cont.)ctype.h

16

Predefined Functions (cont.)ctype.h

17

Predefined Functions (cont.)ctype.h

18

Predefined Functions (cont.)

❑ string.h header

19

Predefined Functions (cont.)string.h

20

Predefined Functions (cont.)string.h

21

Predefined Functions (cont.)string.h

22

Predefined Functions (cont.)string.h

23

Predefined Functions (cont.)string.h

24

❑ All C++ programs must contain at least one function, which

is the main().

❑ Functions must be assigned a name. Similar to variables,

each function is given a valid identifier name.

❑ A function name must be followed by parentheses().

❑ The characteristics of user-defined functions are:

1. A function name must be unique

2. A function performs a specific task

3. A function is independent

4. A function may receive and return values to the calling function

User-defined Functions

25

Function
Element

Function
prototype/
declaration

Function call
Function
definition

User-defined Functions

2 31

26

User-defined Functions

1

2

3

3

Function prototype/ declaration

Function call

Function definition

Function definition

3

3

Function definition

Function definition

2

Function call

No need to declare function if function

definition on top of main function

27

User-defined Functions

3

3

Function definition

Function definition

28

❑ To make programs more readable, C++ programmers

usually insert functions after the main function.

❑ If the function is placed after the main function, the function

declaration, also known as function prototype, is required

and should be placed on top of the program above the main

function.

❑ Similar to declaring variables, the purpose of prototyping or

declaring functions is to notify the compiler on the existence

of the function, thus memory will be allocated to store the

function.

Function Declaration/Prototype1

29

❑ If a function definition is placed below the function main and is not

prototyped, an error will occur.

❑ A function prototype can be written according to the following form:

function_type function_name (parameter list);

▪ function_type is any data type such as int, double, float,

char or void

▪ function_name is any identifier name as the name must follow

the rules in naming identifiers.

▪ parameter list is any data type which belongs to variables or

constants that is passed to the function.

❑ Similar to statements, a function declaration/prototype must end with

a semicolon(;).

Function Declaration/Prototype1

30

❑ A function is a sub program which can perform specific tasks.

❑ Function definition will not be used if it is not called by the function

call.

❑ To write a function definition, below is the correct form:

function_type function_name (formal parameter list)

{

function_body

}

▪ function type is any data type such as int, double, float, char or

void.

▪ function_name is any identifier name as the name must follow the rules in

naming identifiers
▪ parameter list is any data type and identifier name that is being passed to

the function

Function Definition3

31

❑ A parameter list in a function definition is known as formal

parameter list.

❑ If there is more than one parameter list, separate them with

commas (,).

❑ function_body is enclosed in braces and composed of

executable statements such as input, process and output.

❑ A function definition which starts with the function type int,

double, float and char must return its value to the function

call, whereas if it starts with function type void, the function

does not have to return a value

Function Definition3

32

Function Definition

3

Function definition

3

Function definition

3

NOTE :

if no return statement, put void in front of your

function name

33

Function Definition3

3

Function definition with Return

Statement

34

❑ All function definitions must be called so that they can be useful.

❑ A function definition which is not called does not have the ability to perform

its task.

❑ A function definition in a program can be called by any other functions

including the main function.

❑ When calling a function, follow the form below:

function_name (actual parameter list);

– function_name is any identifier name as the name must follow the rules in

naming identifiers.

– parameter list is any identifier name or value that is being passed to the function.

❑ A parameter list in a function call is known as an actual parameter list. If

there is more than one parameter list, separate them with commas (,).

Function Call2

35

Function Call2

2

Function Call

2

Function Call

1

Function Declaration

3

Function Definition

36

Types of Variable and Their Scope

37

❑ A function which type is int, char, double or float must

return values to the function call.

❑ A function can only return one value at a time.

❑ The syntax to return a value is:

return expression;

❑ an expression can be in the form of values that match with

their type of identifiers.

Function with Return Statement

38

Function with Return Statement

3

Function definition

2

Function Call

1. Call and send value

2. Return salary

39

Function with Return Statement

40

❑ A function which starts with the word void in front does not

have to return a value to the function call.

❑ However, this function can have the word return in it but the

purpose is only to stop function execution and does not

return any value.

❑ Any statement after return will not be executed.

Function with Return Statement

41

❑ If a global variable is not used in a program, the variable

needs to be declared as a local variable.

❑ Parameter passing must be done to pass the variables to

the function.

❑ In parameter passing, the parameter data type needs to be

written in the parameter list in the function

declaration/prototype and it needs to be declared in the

function definition.

❑ However, in the function call, the parameter which passed

the parameter to the function definition must only pass the

value or identifier name.

Parameter Passing

42

❑ Three important things about parameters:

1. The number of actual parameters and formal parameters

must both be the same in the function call and function

definition.

2. The relationship between the actual parameter and formal

parameter is one-to-one. First, the actual parameter must be

the same with the first formal parameter.

3. The data type for every actual parameter must the same as

the formal parameter or type that can be changed by the

compiler.

Parameter Passing

43

Parameter Passing

44

Parameter Passing

Pass By Value

Pass By Reference

- & symbol

45

Parameter Passing

a=5 b=3

a=5 b=3 j=5 k=3

j=4 k=7 x = 11

a=5 b=3 z = 11

46

Parameter Passing

47

Parameter Passing

48

❑ Functions can divide problems into sub-problems.

❑ In order to develop programs using functions, the three

function elements needed to be identified are function

prototype/declaration, function call and function definition.

❑ Writing programs using functions provide many advantages

as functions can break a program into smaller items which

will be easier for the programmer to code, test and debug.

❑ Each of the functions is reusable where the function can be

called many times.

❑ Repeating code in a program can be avoided.

Conclusion

